Paper 4, Section II, B

Classical Dynamics | Part II, 2018

Given a Lagrangian L(qi,q˙i,t)\mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right) with degrees of freedom qiq_{i}, define the Hamiltonian and show how Hamilton's equations arise from the Lagrange equations and the Legendre transform.

Consider the Lagrangian for a symmetric top moving in constant gravity:

L=12A(θ˙2+ϕ˙2sin2θ)+12B(ψ˙+ϕ˙cosθ)2Mglcosθ\mathcal{L}=\frac{1}{2} A\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2} \theta\right)+\frac{1}{2} B(\dot{\psi}+\dot{\phi} \cos \theta)^{2}-M g l \cos \theta

where A,B,M,gA, B, M, g and ll are constants. Construct the corresponding Hamiltonian, and find three independent Poisson-commuting first integrals of Hamilton's equations.

Typos? Please submit corrections to this page on GitHub.