Paper 1, Section II, I
(a) Let be an uncountable field, a maximal ideal and
Show that every element of is algebraic over .
(b) Now assume that is algebraically closed. Suppose that is an ideal, and that vanishes on . Using the result of part (a) or otherwise, show that for some .
(c) Let be a morphism of affine algebraic varieties. Show if and only if the map is injective.
Suppose now that , and that and are irreducible. Define the dimension of , and show . [You may use whichever definition of you find most convenient.]
Typos? Please submit corrections to this page on GitHub.