Paper 4, Section I, 4G
(a) State the theorem, the recursion theorem, and Rice's theorem.
(b) Show that if is partial recursive, then there is some such that
(c) By considering the partial function given by
show there exists some such that has exactly elements.
(d) Given , is it possible to compute whether or not has exactly 9 elements? Justify your answer.
[Note that we define . Any use of Church's thesis in your answers should be explicitly stated.]
Typos? Please submit corrections to this page on GitHub.