Paper 2, Section II, F
(a) Give Bernstein's probabilistic proof of Weierstrass's theorem.
(b) Are the following statements true or false? Justify your answer in each case.
(i) If is continuous, then there exists a sequence of polynomials converging pointwise to on .
(ii) If is continuous, then there exists a sequence of polynomials converging uniformly to on .
(iii) If is continuous and bounded, then there exists a sequence of polynomials converging uniformly to on .
(iv) If is continuous and are distinct points in , then there exists a sequence of polynomials with , for , converging uniformly to on .
(v) If is times continuously differentiable, then there exists a sequence of polynomials such that uniformly on for each .
Typos? Please submit corrections to this page on GitHub.