Paper 3, Section II, A

Statistical Physics | Part II, 2018

(a) A system of non-interacting bosons has single particle states i|i\rangle with energies ϵi0\epsilon_{i} \geqslant 0. Show that the grand canonical partition function is

logZ=ilog(1eβ(ϵiμ))\log \mathcal{Z}=-\sum_{i} \log \left(1-e^{-\beta\left(\epsilon_{i}-\mu\right)}\right)

where β=1/(kT),k\beta=1 /(k T), k is Boltzmann's constant, and μ\mu is the chemical potential. What is the maximum possible value for μ\mu ?

(b) A system of N1N \gg 1 bosons has one energy level with zero energy and M1M \gg 1 energy levels with energy ϵ>0\epsilon>0. The number of particles with energies 0,ϵ0, \epsilon is N0,NϵN_{0}, N_{\epsilon} respectively.

(i) Write down expressions for N0\left\langle N_{0}\right\rangle and Nϵ\left\langle N_{\epsilon}\right\rangle in terms of μ\mu and β\beta.

(ii) At temperature TT what is the maximum possible number NϵmaxN_{\epsilon}^{\max } of bosons in the state with energy ϵ?\epsilon ? What happens for N>Nϵmax?N>N_{\epsilon}^{\max } ?

(iii) Calculate the temperature TBT_{B} at which Bose condensation occurs.

(iv) For T>TBT>T_{B}, show that μ=ϵ(TBT)/TB\mu=\epsilon\left(T_{B}-T\right) / T_{B}. For T<TBT<T_{B} show that

μkTNeϵ/(kT)1eϵ/(kT)eϵ/(kTB).\mu \approx-\frac{k T}{N} \frac{e^{\epsilon /(k T)}-1}{e^{\epsilon /(k T)}-e^{\epsilon /\left(k T_{B}\right)}} .

(v) Calculate the mean energy E\langle E\rangle for T>TBT>T_{B} and for T<TBT<T_{B}. Hence show that the heat capacity of the system is

C{1kT2Mϵ2(eβϵ1)2T<TB0T>TBC \approx \begin{cases}\frac{1}{k T^{2}} \frac{M \epsilon^{2}}{\left(e^{\beta \epsilon}-1\right)^{2}} & T<T_{B} \\ 0 & T>T_{B}\end{cases}

Typos? Please submit corrections to this page on GitHub.