Paper 3, Section II, K
In the model of a Gaussian distribution in dimension , with unknown mean and known identity covariance matrix , we estimate based on a sample of i.i.d. observations drawn from .
(a) Define the Fisher information , and compute it in this model.
(b) We recall that the observed Fisher information is given by
Find the limit of , where is the maximum likelihood estimator of in this model.
(c) Define the Wald statistic and compute it. Give the limiting distribution of and explain how it can be used to design a confidence interval for .
[You may use results from the course provided that you state them clearly.]
Typos? Please submit corrections to this page on GitHub.