Paper 1, Section II, D

Principles of Quantum Mechanics | Part II, 2018

A one-dimensional harmonic oscillator has Hamiltonian

H=ω(AA+12)H=\hbar \omega\left(A^{\dagger} A+\frac{1}{2}\right)

where [A,A]=1\left[A, A^{\dagger}\right]=1. Show that An=nn1A|n\rangle=\sqrt{n}|n-1\rangle, where Hn=(n+12)ωnH|n\rangle=\left(n+\frac{1}{2}\right) \hbar \omega|n\rangle and nn=1\langle n \mid n\rangle=1.

This oscillator is perturbed by adding a new term λX4\lambda X^{4} to the Hamiltonian. Given that

A=mωXiP2mωA=\frac{m \omega X-i P}{\sqrt{2 m \hbar \omega}}

show that the ground state of the perturbed system is

0λ=0λ4m2ω3(322+324)\left|0_{\lambda}\right\rangle=|0\rangle-\frac{\hbar \lambda}{4 m^{2} \omega^{3}}\left(3 \sqrt{2}|2\rangle+\sqrt{\frac{3}{2}}|4\rangle\right)

to first order in λ\lambda. [You may use the fact that, in non-degenerate perturbation theory, a perturbation Δ\Delta causes the first-order shift

m(1)=nmnΔmEmEnn\left|m^{(1)}\right\rangle=\sum_{n \neq m} \frac{\langle n|\Delta| m\rangle}{E_{m}-E_{n}}|n\rangle

in the mth m^{\text {th }}energy level.]

Typos? Please submit corrections to this page on GitHub.