Paper 4, Section II, D

Principles of Quantum Mechanics | Part II, 2018

The spin operators obey the commutation relations [Si,Sj]=iϵijkSk\left[S_{i}, S_{j}\right]=i \hbar \epsilon_{i j k} S_{k}. Let s,σ|s, \sigma\rangle be an eigenstate of the spin operators SzS_{z} and S2\mathbf{S}^{2}, with Szs,σ=σs,σS_{z}|s, \sigma\rangle=\sigma \hbar|s, \sigma\rangle and S2s,σ=s(s+1)2s,σ\mathbf{S}^{2}|s, \sigma\rangle=s(s+1) \hbar^{2}|s, \sigma\rangle. Show that

S±s,σ=s(s+1)σ(σ±1)s,σ±1,S_{\pm}|s, \sigma\rangle=\sqrt{s(s+1)-\sigma(\sigma \pm 1)} \hbar|s, \sigma \pm 1\rangle,

where S±=Sx±iSyS_{\pm}=S_{x} \pm i S_{y}. When s=1s=1, use this to derive the explicit matrix representation

Sx=2(010101010)S_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{lll} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)

in a basis in which SzS_{z} is diagonal.

A beam of atoms, each with spin 1 , is polarised to have spin ++\hbar along the direction n=(sinθ,0,cosθ)\mathbf{n}=(\sin \theta, 0, \cos \theta). This beam enters a Stern-Gerlach filter that splits the atoms according to their spin along the z^\hat{\mathbf{z}}-axis. Show that N+/N=cot4(θ/2)N_{+} / N_{-}=\cot ^{4}(\theta / 2), where N+N_{+}(respectively, NN_{-}) is the number of atoms emerging from the filter with spins parallel (respectively, anti-parallel) to z^\hat{\mathbf{z}}.

Typos? Please submit corrections to this page on GitHub.