Paper 3, Section I, G

Number Theory | Part II, 2018

What is a multiplicative function? Show that if f(n)f(n) is a multiplicative function, then so is g(n)=dnf(d)g(n)=\sum_{d \mid n} f(d).

Define the Möbius function μ(n)\mu(n), and show that it is multiplicative. Deduce that

dnμ(d)={1 if n=10 if n>1\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}

and that

f(n)=enμ(e)g(ne).f(n)=\sum_{e \mid n} \mu(e) g\left(\frac{n}{e}\right) .

What is g(n)g(n) if f(n)=n?f(n)=n ? What is f(n)f(n) if g(n)=n?g(n)=n ?

Typos? Please submit corrections to this page on GitHub.