Paper 2, Section II, A
The Hurwitz zeta function is defined for by
State without proof the complex values of for which this series converges.
Consider the integral
where is the Hankel contour. Show that provides an analytic continuation of the Hurwitz zeta function for all . Include in your account a careful discussion of removable singularities. [Hint: .]
Show that has a simple pole at and find its residue.
Typos? Please submit corrections to this page on GitHub.