Paper 2, Section II, B

Fluid Dynamics II | Part II, 2016

For a two-dimensional flow in plane polar coordinates (r,θ)(r, \theta), state the relationship between the streamfunction ψ(r,θ)\psi(r, \theta) and the flow components uru_{r} and uθu_{\theta}. Show that the vorticity ω\omega is given by ω=2ψ\omega=-\nabla^{2} \psi, and deduce that the streamfunction for a steady two-dimensional Stokes flow satisfies the biharmonic equation

4ψ=0\nabla^{4} \psi=0

A rigid stationary circular disk of radius aa occupies the region rar \leqslant a. The flow far from the disk tends to a steady straining flow u=(Ex,Ey)\mathbf{u}_{\infty}=(-E x, E y), where EE is a constant. Inertial forces may be neglected. Calculate the streamfunction, ψ(r,θ)\psi_{\infty}(r, \theta), for the far-field flow.

By making an appropriate assumption about its dependence on θ\theta, find the streamfunction ψ\psi for the flow around the disk, and deduce the flow components, ur(r,θ)u_{r}(r, \theta) and uθ(r,θ)u_{\theta}(r, \theta).

Calculate the tangential surface stress, σrθ\sigma_{r \theta}, acting on the boundary of the disk.

[[ Hints: In plane polar coordinates (r,θ)(r, \theta),

u=1r(rur)r+1ruθθ,ω=1r(ruθ)r1rurθ2V=1rr(rVr)+1r22Vθ2,erθ=12(rr(uθr)+1rurθ)\begin{gathered} \boldsymbol{\nabla} \cdot \mathbf{u}=\frac{1}{r} \frac{\partial\left(r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}, \quad \omega=\frac{1}{r} \frac{\partial\left(r u_{\theta}\right)}{\partial r}-\frac{1}{r} \frac{\partial u_{r}}{\partial \theta} \\ \nabla^{2} V=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \theta^{2}}, \quad e_{r \theta}=\frac{1}{2}\left(r \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}\right) \end{gathered}

Typos? Please submit corrections to this page on GitHub.