Paper 1, Section II, C

Cosmology | Part II, 2016

The distribution function f(x,p,t)f(\mathbf{x}, \mathbf{p}, t) gives the number of particles in the universe with position in (x,x+δx)(\mathbf{x}, \mathbf{x}+\delta \mathbf{x}) and momentum in (p,p+δp)(\mathbf{p}, \mathbf{p}+\delta \mathbf{p}) at time tt. It satisfies the boundary condition that f0f \rightarrow 0 as x|\mathbf{x}| \rightarrow \infty and as p|\mathbf{p}| \rightarrow \infty. Its evolution obeys the Boltzmann equation

ft+fpdpdt+fxdxdt=[dfdt]col\frac{\partial f}{\partial t}+\frac{\partial f}{\partial \mathbf{p}} \cdot \frac{d \mathbf{p}}{d t}+\frac{\partial f}{\partial \mathbf{x}} \cdot \frac{d \mathbf{x}}{d t}=\left[\frac{d f}{d t}\right]_{\mathrm{col}}

where the collision term [dfdt]col\left[\frac{d f}{d t}\right]_{c o l} describes any particle production and annihilation that occurs.

The universe expands isotropically and homogeneously with expansion scale factor a(t)a(t), so the momenta evolve isotropically with magnitude pa1p \propto a^{-1}. Show that the Boltzmann equation simplifies to

fta˙apfp=[dfdt]col\frac{\partial f}{\partial t}-\frac{\dot{a}}{a} \mathbf{p} \cdot \frac{\partial f}{\partial \mathbf{p}}=\left[\frac{d f}{d t}\right]_{\mathrm{col}}

The number densities nn of particles and nˉ\bar{n} of antiparticles are defined in terms of their distribution functions ff and fˉ\bar{f}, and momenta pp and pˉ\bar{p}, by

n=0f4πp2dp and nˉ=0fˉ4πpˉ2dpˉn=\int_{0}^{\infty} f 4 \pi p^{2} d p \quad \text { and } \quad \bar{n}=\int_{0}^{\infty} \bar{f} 4 \pi \bar{p}^{2} d \bar{p}

and the collision term may be assumed to be of the form

[dfdt]col=σv0fˉf4πpˉ2dpˉ+R\left[\frac{d f}{d t}\right]_{\mathrm{col}}=-\langle\sigma v\rangle \int_{0}^{\infty} \bar{f} f 4 \pi \bar{p}^{2} d \bar{p}+R

where σv\langle\sigma v\rangle determines the annihilation cross-section of particles by antiparticles and RR is the production rate of particles.

By integrating equation ()(*) with respect to the momentum p\mathbf{p} and assuming that σv\langle\sigma v\rangle is a constant, show that

dndt+3a˙an=σvnnˉ+Q\frac{d n}{d t}+3 \frac{\dot{a}}{a} n=-\langle\sigma v\rangle n \bar{n}+Q

where Q=0R4πp2dpQ=\int_{0}^{\infty} R 4 \pi p^{2} d p. Assuming the same production rate RR for antiparticles, write down the corresponding equation satisfied by nˉ\bar{n} and show that

(nnˉ)a3=constant(n-\bar{n}) a^{3}=\mathrm{constant}

Typos? Please submit corrections to this page on GitHub.