Paper 4, Section I, E

Classical Dynamics | Part II, 2016

Using conservation of angular momentum L=Laea\mathbf{L}=L_{a} \mathbf{e}_{a} in the body frame, derive the Euler equations for a rigid body:

I1ω˙1+(I3I2)ω2ω3=0,I2ω˙2+(I1I3)ω3ω1=0,I3ω˙3+(I2I1)ω1ω2=0I_{1} \dot{\omega}_{1}+\left(I_{3}-I_{2}\right) \omega_{2} \omega_{3}=0, \quad I_{2} \dot{\omega}_{2}+\left(I_{1}-I_{3}\right) \omega_{3} \omega_{1}=0, \quad I_{3} \dot{\omega}_{3}+\left(I_{2}-I_{1}\right) \omega_{1} \omega_{2}=0

[You may use the formula e˙a=ωea\dot{\mathbf{e}}_{a}=\boldsymbol{\omega} \wedge \mathbf{e}_{a} without proof.]

Assume that the principal moments of inertia satisfy I1<I2<I3I_{1}<I_{2}<I_{3}. Determine whether a rotation about the principal 3-axis leads to stable or unstable perturbations.

Typos? Please submit corrections to this page on GitHub.