Paper 1, Section I, H

Topics in Analysis | Part II, 2016

By considering the function Rn+1R\mathbb{R}^{n+1} \rightarrow \mathbb{R} defined by

R(a0,,an)=supt[1,1]j=0najtjR\left(a_{0}, \ldots, a_{n}\right)=\sup _{t \in[-1,1]}\left|\sum_{j=0}^{n} a_{j} t^{j}\right|

or otherwise, show that there exist Kn>0K_{n}>0 and δn>0\delta_{n}>0 such that

Knj=0najsupt[1,1]j=0najtjδnj=0najK_{n} \sum_{j=0}^{n}\left|a_{j}\right| \geqslant \sup _{t \in[-1,1]}\left|\sum_{j=0}^{n} a_{j} t^{j}\right| \geqslant \delta_{n} \sum_{j=0}^{n}\left|a_{j}\right|

for all ajR,0jna_{j} \in \mathbb{R}, 0 \leqslant j \leqslant n.

Show, quoting carefully any theorems you use, that we must have δn0\delta_{n} \rightarrow 0 as nn \rightarrow \infty.

Typos? Please submit corrections to this page on GitHub.