Paper 2, Section II, I
Show that the 1-dimensional (complex) characters of a finite group form a group under pointwise multiplication. Denote this group by . Show that if , the map from to is a character of , hence an element of . What is the kernel of the ?
Show that if is abelian the map is an isomorphism. Deduce, from the structure theorem for finite abelian groups, that the groups and are isomorphic as abstract groups.
Typos? Please submit corrections to this page on GitHub.