Paper 4, Section II, F
State the Lefschetz fixed point theorem.
Let be an orientable surface of genus (which you may suppose has a triangulation), and let be a continuous map such that
,
has no fixed points.
By considering the eigenvalues of the linear map , and their multiplicities, show that must be congruent to 1 modulo 3 .
Typos? Please submit corrections to this page on GitHub.