Paper 2, Section I, E

Cosmology | Part II, 2014

A self-gravitating fluid with density ρ\rho, pressure P(ρ)P(\rho) and velocity v\mathbf{v} in a gravitational potential Φ\Phi obeys the equations

ρt+(ρv)=0vt+(v)v+Pρ+Φ=02Φ=4πGρ\begin{aligned} \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v}) &=0 \\ \frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}+\frac{\nabla P}{\rho}+\nabla \Phi &=\mathbf{0} \\ \nabla^{2} \Phi &=4 \pi G \rho \end{aligned}

Assume that there exists a static constant solution of these equations with v=0,ρ=ρ0\mathbf{v}=\mathbf{0}, \rho=\rho_{0} and Φ=Φ0\Phi=\Phi_{0}, for which Φ0\nabla \Phi_{0} can be neglected. This solution is perturbed. Show that, to first order in the perturbed quantities, the density perturbations satisfy

2ρ1t2=cs22ρ1+4πGρ0ρ1\frac{\partial^{2} \rho_{1}}{\partial t^{2}}=c_{s}^{2} \nabla^{2} \rho_{1}+4 \pi G \rho_{0} \rho_{1}

where ρ=ρ0+ρ1(x,t)\rho=\rho_{0}+\rho_{1}(\mathbf{x}, t) and cs2=dP/dρc_{s}^{2}=d P / d \rho. Show that there are solutions to this equation of the form

ρ1(x,t)=Aexp[ikx+iωt]\rho_{1}(\mathbf{x}, t)=A \exp [-i \mathbf{k} \cdot \mathbf{x}+i \omega t]

where A,ωA, \omega and k\mathbf{k} are constants and

ω2=cs2kk4πGρ0\omega^{2}=c_{s}^{2} \mathbf{k} \cdot \mathbf{k}-4 \pi G \rho_{0}

Interpret these solutions physically in the limits of small and large k|\mathbf{k}|, explaining what happens to density perturbations on large and small scales, and determine the critical wavenumber that divides the two distinct behaviours of the perturbation.

Typos? Please submit corrections to this page on GitHub.