Paper 1, Section I, A

Classical Dynamics | Part II, 2014

Consider a one-dimensional dynamical system with generalized coordinate and momentum (q,p)(q, p).

(a) Define the Poisson bracket {f,g}\{f, g\} of two functions f(q,p,t)f(q, p, t) and g(q,p,t)g(q, p, t).

(b) Verify the Leibniz rule

{fg,h}=f{g,h}+g{f,h}\{f g, h\}=f\{g, h\}+g\{f, h\}

(c) Explain what is meant by a canonical transformation (q,p)(Q,P)(q, p) \rightarrow(Q, P).

(d) State the condition for a transformation (q,p)(Q,P)(q, p) \rightarrow(Q, P) to be canonical in terms of the Poisson bracket {Q,P}\{Q, P\}. Use this to determine whether or not the following transformations are canonical:

(i) Q=q22,P=pqQ=\frac{q^{2}}{2}, P=\frac{p}{q},

(ii) Q=tanq,P=pcosqQ=\tan q, P=p \cos q,

(iii) Q=2qetcosp,P=2qetsinpQ=\sqrt{2 q} e^{t} \cos p, P=\sqrt{2 q} e^{-t} \sin p.

Typos? Please submit corrections to this page on GitHub.