Paper 4, Section II, C

Asymptotic Methods | Part II, 2014

Derive the leading-order Liouville Green (or WKBJ) solution for ϵ1\epsilon \ll 1 to the ordinary differential equation

ϵ2d2fdy2+Φ(y)f=0\epsilon^{2} \frac{d^{2} f}{d y^{2}}+\Phi(y) f=0

where Φ(y)>0\Phi(y)>0.

The function f(y;ϵ)f(y ; \epsilon) satisfies the ordinary differential equation

ϵ2d2fdy2+(1+1y2ϵ2y2)f=0\epsilon^{2} \frac{d^{2} f}{d y^{2}}+\left(1+\frac{1}{y}-\frac{2 \epsilon^{2}}{y^{2}}\right) f=0

subject to the boundary condition f(0)=2f^{\prime \prime}(0)=2. Show that the Liouville-Green solution of (1) for ϵ1\epsilon \ll 1 takes the asymptotic forms

where α1,α2,B\alpha_{1}, \alpha_{2}, B and θ2\theta_{2} are constants.

[\left[\right. Hint: You may assume that 0y1+u1du=y(1+y)+sinh1y]\left.\int_{0}^{y} \sqrt{1+u^{-1}} d u=\sqrt{y(1+y)}+\sinh ^{-1} \sqrt{y} \cdot\right]

Explain, showing the relevant change of variables, why the leading-order asymptotic behaviour for 0y10 \leqslant y \ll 1 can be obtained from the reduced equation

d2fdx2+(1x2x2)f=0\frac{d^{2} f}{d x^{2}}+\left(\frac{1}{x}-\frac{2}{x^{2}}\right) f=0

The unique solution to (2)(2) with f(0)=2f^{\prime \prime}(0)=2 is f=x1/2J3(2x1/2)f=x^{1 / 2} J_{3}\left(2 x^{1 / 2}\right), where the Bessel function J3(z)J_{3}(z) is known to have the asymptotic form

J3(z)(2πz)1/2cos(z7π4) as z.J_{3}(z) \sim\left(\frac{2}{\pi z}\right)^{1 / 2} \cos \left(z-\frac{7 \pi}{4}\right) \text { as } z \rightarrow \infty .

Hence find the values of α1\alpha_{1} and α2\alpha_{2}.

fα1y14exp(2iy/ϵ)+α2y14exp(2iy/ϵ) for ϵ2y1 and fBcos[θ2+(y+logy)/ϵ] for y1,\begin{aligned} & f \sim \alpha_{1} y^{\frac{1}{4}} \exp (2 i \sqrt{y} / \epsilon)+\alpha_{2} y^{\frac{1}{4}} \exp (-2 i \sqrt{y} / \epsilon) \quad \text { for } \quad \epsilon^{2} \ll y \ll 1 \\ & \text { and } \quad f \sim B \cos \left[\theta_{2}+(y+\log \sqrt{y}) / \epsilon\right] \quad \text { for } \quad y \gg 1, \end{aligned}

Typos? Please submit corrections to this page on GitHub.