Paper 4, Section II, K

Stochastic Financial Models | Part II, 2014

Write down the Black-Scholes partial differential equation (PDE), and explain briefly its relevance to option pricing.

Show how a change of variables reduces the Black-Scholes PDE to the heat equation:

ft+122fx2=0 for all (t,x)[0,T)×R,f(T,x)=φ(x) for all xR\begin{aligned} &\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}=0 \text { for all }(t, x) \in[0, T) \times \mathbb{R}, \\ &f(T, x)=\varphi(x) \text { for all } x \in \mathbb{R} \end{aligned}

where φ\varphi is a given boundary function.

Consider the following numerical scheme for solving the heat equation on the equally spaced grid (tn,xk)[0,T]×R\left(t_{n}, x_{k}\right) \in[0, T] \times \mathbb{R} where tn=nΔtt_{n}=n \Delta t and xk=kΔx,n=0,1,,Nx_{k}=k \Delta x, n=0,1, \ldots, N and kZk \in \mathbb{Z}, and Δt=T/N\Delta t=T / N. We approximate f(tn,xk)f\left(t_{n}, x_{k}\right) by fknf_{k}^{n} where

0=fn+1fnΔt+θLfn+1+(1θ)Lfn,fkN=φ(xk)0=\frac{f^{n+1}-f^{n}}{\Delta t}+\theta L f^{n+1}+(1-\theta) L f^{n}, \quad f_{k}^{N}=\varphi\left(x_{k}\right)

and θ[0,1]\theta \in[0,1] is a constant and the operator LL is the matrix with non-zero entries Lkk=1(Δx)2L_{k k}=-\frac{1}{(\Delta x)^{2}} and Lk,k+1=Lk,k1=12(Δx)2L_{k, k+1}=L_{k, k-1}=\frac{1}{2(\Delta x)^{2}}. By considering what happens when φ(x)=exp(iωx)\varphi(x)=\exp (i \omega x), show that the finite-difference scheme ()(*) is stable if and only if

1λ(2θ1),1 \geqslant \lambda(2 \theta-1),

where λΔt/(Δx)2\lambda \equiv \Delta t /(\Delta x)^{2}. For what values of θ\theta is the scheme ()(*) unconditionally stable?

Typos? Please submit corrections to this page on GitHub.