Paper 3, Section II, A

Integrable Systems | Part II, 2011

Let U(ρ,τ,λ)U(\rho, \tau, \lambda) and V(ρ,τ,λ)V(\rho, \tau, \lambda) be matrix-valued functions. Consider the following system of overdetermined linear partial differential equations:

ρψ=Uψ,τψ=Vψ\frac{\partial}{\partial \rho} \psi=U \psi, \quad \frac{\partial}{\partial \tau} \psi=V \psi

where ψ\psi is a column vector whose components depend on (ρ,τ,λ)(\rho, \tau, \lambda). Using the consistency condition of this system, derive the associated zero curvature representation (ZCR)

τUρV+[U,V]=0,\frac{\partial}{\partial \tau} U-\frac{\partial}{\partial \rho} V+[U, V]=0,

where [,][\cdot, \cdot] denotes the usual matrix commutator.

(i) Let

U=i2(2λρϕρϕ2λ),V=14iλ(cosϕisinϕisinϕcosϕ)U=\frac{i}{2}\left(\begin{array}{cc} 2 \lambda & \partial_{\rho} \phi \\ \partial_{\rho} \phi & -2 \lambda \end{array}\right), \quad V=\frac{1}{4 i \lambda}\left(\begin{array}{cc} \cos \phi & -i \sin \phi \\ i \sin \phi & -\cos \phi \end{array}\right)

Find a partial differential equation for ϕ=ϕ(ρ,τ)\phi=\phi(\rho, \tau) which is equivalent to the ZCR()\mathrm{ZCR}(*).

(ii) Assuming that UU and VV in ()(*) do not depend on t:=ρτt:=\rho-\tau, show that the trace of (UV)p(U-V)^{p} does not depend on x:=ρ+τx:=\rho+\tau, where pp is any positive integer. Use this fact to construct a first integral of the ordinary differential equation

ϕ=sinϕ, where ϕ=ϕ(x).\phi^{\prime \prime}=\sin \phi, \quad \text { where } \quad \phi=\phi(x) .

Typos? Please submit corrections to this page on GitHub.