Paper 2, Section II, A

Integrable Systems | Part II, 2011

Consider the Poisson structure

{F,G}=RδFδu(x)xδGδu(x)dx\{F, G\}=\int_{\mathbb{R}} \frac{\delta F}{\delta u(x)} \frac{\partial}{\partial x} \frac{\delta G}{\delta u(x)} d x

where F,GF, G are polynomial functionals of u,ux,uxx,u, u_{x}, u_{x x}, \ldots. Assume that u,ux,uxx,u, u_{x}, u_{x x}, \ldots tend to zero as x|x| \rightarrow \infty.

(i) Show that {F,G}={G,F}\{F, G\}=-\{G, F\}.

(ii) Write down Hamilton's equations for u=u(x,t)u=u(x, t) corresponding to the following Hamiltonians:

H0[u]=R12u2dx,H[u]=R(12ux2+u3+uux)dxH_{0}[u]=\int_{\mathbb{R}} \frac{1}{2} u^{2} d x, \quad H[u]=\int_{\mathbb{R}}\left(\frac{1}{2} u_{x}^{2}+u^{3}+u u_{x}\right) d x

(iii) Calculate the Poisson bracket {H0,H}\left\{H_{0}, H\right\}, and hence or otherwise deduce that the following overdetermined system of partial differential equations for u=u(x,t0,t)u=u\left(x, t_{0}, t\right) is compatible:

ut0=uxut=6uuxuxxx\begin{gathered} u_{t_{0}}=u_{x} \\ u_{t}=6 u u_{x}-u_{x x x} \end{gathered}

[You may assume that the Jacobi identity holds for (1).]

(iv) Find a symmetry of (3) generated by X=/u+αt/xX=\partial / \partial u+\alpha t \partial / \partial x for some constant αR\alpha \in \mathbb{R} which should be determined. Construct a vector field YY corresponding to the one parameter group

xβx,tγt,uδu,x \rightarrow \beta x, \quad t \rightarrow \gamma t, \quad u \rightarrow \delta u,

where (β,γ,δ)(\beta, \gamma, \delta) should be determined from the symmetry requirement. Find the Lie algebra generated by the vector fields (X,Y)(X, Y).

Typos? Please submit corrections to this page on GitHub.