Paper 1, Section II, 37D

General Relativity | Part II, 2011

Consider a metric of the form

ds2=2dudv+dx2+dy22H(u,x,y)du2.d s^{2}=-2 d u d v+d x^{2}+d y^{2}-2 H(u, x, y) d u^{2} .

Let xa(λ)x^{a}(\lambda) describe an affinely-parametrised geodesic, where xa(x1,x2,x3,x4)=x^{a} \equiv\left(x^{1}, x^{2}, x^{3}, x^{4}\right)= (u,v,x,y)(u, v, x, y). Write down explicitly the Lagrangian

L=gabx˙ax˙b,L=g_{a b} \dot{x}^{a} \dot{x}^{b},

with x˙a=dxa/dλ\dot{x}^{a}=d x^{a} / d \lambda, using the given metric. Hence derive the four geodesic equations. In particular, show that

v¨+2(Hxx˙+Hyy˙)u˙+Huu˙2=0\ddot{v}+2\left(\frac{\partial H}{\partial x} \dot{x}+\frac{\partial H}{\partial y} \dot{y}\right) \dot{u}+\frac{\partial H}{\partial u} \dot{u}^{2}=0

By comparing these equations with the standard form of the geodesic equation, show that Γ132=H/x\Gamma_{13}^{2}=\partial H / \partial x and derive the other Christoffel symbols.

The Ricci tensor, RabR_{a b}, is defined by

Rab=Γab,ddΓad,bd+ΓdfdΓbafΓbfdΓdafR_{a b}=\Gamma_{a b, d}^{d}-\Gamma_{a d, b}^{d}+\Gamma_{d f}^{d} \Gamma_{b a}^{f}-\Gamma_{b f}^{d} \Gamma_{d a}^{f}

By considering the case a=1,b=1a=1, b=1, show that the vacuum Einstein field equations imply

2Hx2+2Hy2=0\frac{\partial^{2} H}{\partial x^{2}}+\frac{\partial^{2} H}{\partial y^{2}}=0

Typos? Please submit corrections to this page on GitHub.