Paper 2, Section II, E

Further Complex Methods | Part II, 2011

Consider the following sum related to Riemann's zeta function:

S:=m=1[a2π]ms1,s=σ+it,σ,tR,a>2π,a2πN,NZ+,S:=\sum_{m=1}^{\left[\frac{a}{2 \pi}\right]} m^{s-1}, \quad s=\sigma+i t, \sigma, t \in \mathbb{R}, \quad a>2 \pi, a \neq 2 \pi N, N \in \mathbb{Z}^{+},

where [a/2π][a / 2 \pi] denotes the integer part of a/2πa / 2 \pi.

(i) By using an appropriate branch cut, show that

S=eiπs2(2π)sLf(z,s)dz,f(z,s)=ez1ezzs1S=\frac{e^{-\frac{i \pi s}{2}}}{(2 \pi)^{s}} \int_{L} f(z, s) d z, \quad f(z, s)=\frac{e^{-z}}{1-e^{-z}} z^{s-1}

where LL is the circle in the complex zz-plane centred at i(a+b)/2i(a+b) / 2 with radius (ab)/2(a-b) / 2, 0<b<2π0<b<2 \pi.

(ii) Use the above representation to show that, for a>2πa>2 \pi and 0<b<2π0<b<2 \pi,

m=1[a2π]ms1=1(2π)s[eiπs2Cbaf(z,s)dzeiπs2Cabf(z,s)dz+assbss]\sum_{m=1}^{\left[\frac{a}{2 \pi}\right]} m^{s-1}=\frac{1}{(2 \pi)^{s}}\left[e^{-\frac{i \pi s}{2}} \int_{C_{b}^{a}} f(z, s) d z-e^{\frac{i \pi s}{2}} \int_{C_{-a}^{-b}} f(z, s) d z+\frac{a^{s}}{s}-\frac{b^{s}}{s}\right]

where f(z,s)f(z, s) is defined in (i) and the curves Cba,CabC_{b}^{a}, C_{-a}^{-b} are the following semi-circles in the right half complex zz-plane:

The curves CbaC_{b}^{a} and CabC_{-a}^{-b}.

Cba={i(a+b)2+(ab)2eiθ,π2<θ<π2}Cab={i(a+b)2+(ab)2eiθ,π2<θ<π2}\begin{aligned} C_{b}^{a} &=\left\{\frac{i(a+b)}{2}+\frac{(a-b)}{2} e^{i \theta}, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right\} \\ C_{-a}^{-b} &=\left\{\frac{-i(a+b)}{2}+\frac{(a-b)}{2} e^{i \theta}, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right\} \end{aligned}

Part II, 2011 List of Questions

[TURN OVER

Typos? Please submit corrections to this page on GitHub.