Paper 4, Section II, E

Further Complex Methods | Part II, 2011

Let F(z)F(z) be defined by

F(z)=0ezt1+t2dt,argz<π2F(z)=\int_{0}^{\infty} \frac{e^{-z t}}{1+t^{2}} d t, \quad|\arg z|<\frac{\pi}{2}

Let F~(z)\tilde{F}(z) be defined by

F~(z)=P0eiπ2ezζ1+ζ2dζ,0<argz<π\tilde{F}(z)=\mathcal{P} \int_{0}^{\infty e^{-\frac{i \pi}{2}}} \frac{e^{-z \zeta}}{1+\zeta^{2}} d \zeta, \quad 0<\arg z<\pi

where P\mathcal{P} denotes principal value integral and the contour is the negative imaginary axis.

By computing F(z)F~(z)F(z)-\tilde{F}(z), obtain a formula for the analytic continuation of F(z)F(z) for π2argz<π\frac{\pi}{2} \leqslant \arg z<\pi.

Typos? Please submit corrections to this page on GitHub.