Paper 2, Section I, E

Further Complex Methods | Part II, 2011

Find the two complex-valued functions F+(z)F^{+}(z) and F(z)F^{-}(z) such that all of the following hold:

(i) F+(z)F^{+}(z) and F(z)F^{-}(z) are analytic for Imz>0\operatorname{Im} z>0 and Imz<0\operatorname{Im} z<0 respectively, where z=x+iy,x,yRz=x+i y, x, y \in \mathbb{R}.

(ii) F+(x)F(x)=1x4+1,xRF^{+}(x)-F^{-}(x)=\frac{1}{x^{4}+1}, \quad x \in \mathbb{R}.

(iii) F±(z)=O(1z),z,Imz0F^{\pm}(z)=O\left(\frac{1}{z}\right), \quad z \rightarrow \infty, \quad \operatorname{Im} z \neq 0.

Typos? Please submit corrections to this page on GitHub.