Paper 4, Section I, 10E

Cosmology | Part II, 2011

The equilibrium number density of fermions at temperature TT is

n=4πgsh30p2dpexp[(ϵ(p)μ)/kT]+1n=\frac{4 \pi g_{s}}{h^{3}} \int_{0}^{\infty} \frac{p^{2} d p}{\exp [(\epsilon(p)-\mu) / k T]+1}

where gsg_{s} is the spin degeneracy and ϵ(p)=cp2+m2c2\epsilon(p)=c \sqrt{p^{2}+m^{2} c^{2}}. For a non-relativistic gas with pcmc2p c \ll m c^{2} and kTmc2μk T \ll m c^{2}-\mu, show that the number density becomes

n=gs(2πmkTh2)3/2exp[(μmc2)/kT]n=g_{s}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} \exp \left[\left(\mu-m c^{2}\right) / k T\right]

[You may assume that 0dxx2ex2/α=(π/4)α3/2\int_{0}^{\infty} d x x^{2} e^{-x^{2} / \alpha}=(\sqrt{\pi} / 4) \alpha^{3 / 2} for α>0\alpha>0.]

Before recombination, equilibrium is maintained between neutral hydrogen, free electrons, protons and photons through the interaction

p+eH+γp+e^{-} \leftrightarrow H+\gamma

Using the non-relativistic number density ()(*), deduce Saha's equation relating the electron and hydrogen number densities,

ne2nH(2πmekTh2)3/2exp(I/kT)\frac{n_{e}^{2}}{n_{H}} \approx\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2} \exp (-I / k T)

where I=(mp+memH)c2I=\left(m_{p}+m_{e}-m_{H}\right) c^{2} is the ionization energy of hydrogen. State clearly any assumptions you have made.

Typos? Please submit corrections to this page on GitHub.