Paper 3, Section I, 9C\mathbf{9 C}

Classical Dynamics | Part II, 2011

The Lagrangian for a heavy symmetric top is

L=12I1(θ˙2+ϕ˙2sin2θ)+12I3(ψ˙+ϕ˙cosθ)2MglcosθL=\frac{1}{2} I_{1}\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2} \theta\right)+\frac{1}{2} I_{3}(\dot{\psi}+\dot{\phi} \cos \theta)^{2}-M g l \cos \theta

State Noether's Theorem. Hence, or otherwise, find two conserved quantities linear in momenta, and a third conserved quantity quadratic in momenta.

Writing μ=cosθ\mu=\cos \theta, deduce that μ\mu obeys an equation of the form

μ˙2=F(μ)\dot{\mu}^{2}=F(\mu)

where F(μ)F(\mu) is cubic in μ\mu. [You need not determine the explicit form of F(μ).F(\mu) . ]

Typos? Please submit corrections to this page on GitHub.