Paper 1, Section II, K

Principles of Statistics | Part II, 2011

Define admissible, Bayes, minimax decision rules.

A random vector X=(X1,X2,X3)TX=\left(X_{1}, X_{2}, X_{3}\right)^{\mathrm{T}} has independent components, where XiX_{i} has the normal distribution N(θi,1)\mathcal{N}\left(\theta_{i}, 1\right) when the parameter vector Θ\Theta takes the value θ=(θ1,θ2,θ3)T\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)^{\mathrm{T}}. It is required to estimate Θ\Theta by a point aR3a \in \mathbb{R}^{3}, with loss function L(θ,a)=aθ2L(\theta, a)=\|a-\theta\|^{2}. What is the risk function of the maximum-likelihood estimator Θ^:=X?\widehat{\Theta}:=X ? Show that Θ^\widehat{\Theta}is dominated by the estimator Θ~:=(1X2)X\widetilde{\Theta}:=\left(1-\|X\|^{-2}\right) X.

Typos? Please submit corrections to this page on GitHub.