Paper 4, Section II, H

Linear Analysis | Part II, 2010

Let XX be a Banach space.

a) What does it mean for a bounded linear map T:XXT: X \rightarrow X to be compact?

b) Let B(X)\mathcal{B}(X) be the Banach space of all bounded linear maps S:XXS: X \rightarrow X. Let B0(X)\mathcal{B}_{0}(X) be the subset of B(X)\mathcal{B}(X) consisting of all compact operators. Show that B0(X)\mathcal{B}_{0}(X) is a closed subspace of B(X)\mathcal{B}(X). Show that, if SB(X)S \in \mathcal{B}(X) and TB0(X)T \in \mathcal{B}_{0}(X), then ST,TSB0(X)S T, T S \in \mathcal{B}_{0}(X).

c) Let

X=2={x=(x1,x2,):xjC and x22=j=1xj2<}X=\ell^{2}=\left\{x=\left(x_{1}, x_{2}, \ldots\right): x_{j} \in \mathbb{C} \quad \text { and } \quad\|x\|_{2}^{2}=\sum_{j=1}^{\infty}\left|x_{j}\right|^{2}<\infty\right\}

and T:XXT: X \rightarrow X be defined by

(Tx)k=xk+1k+1.(T x)_{k}=\frac{x_{k+1}}{k+1} .

Is TT compact? What is the spectrum of T?T ? Explain your answers.

Typos? Please submit corrections to this page on GitHub.