Paper 1, Section II, E

Integrable Systems | Part II, 2010

Define a Poisson structure on an open set URnU \subset \mathbb{R}^{n} in terms of an anti-symmetric matrix ωab:UR\omega^{a b}: U \longrightarrow \mathbb{R}, where a,b=1,,na, b=1, \cdots, n. By considering the Poisson brackets of the coordinate functions xax^{a} show that

d=1n(ωdcωabxd+ωdbωcaxd+ωdaωbcxd)=0\sum_{d=1}^{n}\left(\omega^{d c} \frac{\partial \omega^{a b}}{\partial x^{d}}+\omega^{d b} \frac{\partial \omega^{c a}}{\partial x^{d}}+\omega^{d a} \frac{\partial \omega^{b c}}{\partial x^{d}}\right)=0

Now set n=3n=3 and consider ωab=c=13εabcxc\omega^{a b}=\sum_{c=1}^{3} \varepsilon^{a b c} x^{c}, where εabc\varepsilon^{a b c} is the totally antisymmetric symbol on R3\mathbb{R}^{3} with ε123=1\varepsilon^{123}=1. Find a non-constant function f:R3Rf: \mathbb{R}^{3} \longrightarrow \mathbb{R} such that

{f,xa}=0,a=1,2,3\left\{f, x^{a}\right\}=0, \quad a=1,2,3

Consider the Hamiltonian

H(x1,x2,x3)=12a,b=13MabxaxbH\left(x^{1}, x^{2}, x^{3}\right)=\frac{1}{2} \sum_{a, b=1}^{3} M^{a b} x^{a} x^{b}

where MabM^{a b} is a constant symmetric matrix and show that the Hamilton equations of motion with ωab=c=13εabcxc\omega^{a b}=\sum_{c=1}^{3} \varepsilon^{a b c} x^{c} are of the form

x˙a=b,c=13Qabcxbxc,\dot{x}^{a}=\sum_{b, c=1}^{3} Q^{a b c} x^{b} x^{c},

where the constants QabcQ^{a b c} should be determined in terms of MabM^{a b}.

Typos? Please submit corrections to this page on GitHub.