Paper 4, Section II, A

Fluid Dynamics II | Part II, 2010

An axisymmetric incompressible Stokes flow has the Stokes stream function Ψ(R,θ)\Psi(R, \theta) in spherical polar coordinates (R,θ,ϕ)(R, \theta, \phi). Give expressions for the components uR,uθu_{R}, u_{\theta} of the flow field in terms of Ψ\Psi. Show that the equation satisfied by Ψ\Psi is

D2(D2Ψ)=0, where D2=2R2+sinθR2θ(1sinθθ)\mathcal{D}^{2}\left(\mathcal{D}^{2} \Psi\right)=0, \quad \text { where } \quad \mathcal{D}^{2}=\frac{\partial^{2}}{\partial R^{2}}+\frac{\sin \theta}{R^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\right)

Fluid is contained between the two spheres R=a,R=bR=a, R=b, with bab \gg a. The fluid velocity vanishes on the outer sphere, while on the inner sphere uR=Ucosθ,uθ=0u_{R}=U \cos \theta, u_{\theta}=0. It is assumed that Stokes flow applies.

(i) Show that the Stokes stream function,

Ψ(R,θ)=a2Usin2θ(A(aR)+B(Ra)+C(Ra)2+D(Ra)4)\Psi(R, \theta)=a^{2} U \sin ^{2} \theta\left(A\left(\frac{a}{R}\right)+B\left(\frac{R}{a}\right)+C\left(\frac{R}{a}\right)^{2}+D\left(\frac{R}{a}\right)^{4}\right)

is the general solution of ()(*) proportional to sin2θ\sin ^{2} \theta and write down the conditions on A,B,C,DA, B, C, D that allow all the boundary conditions to be satisfied.

(ii) Now let bb \rightarrow \infty, with u0|\mathbf{u}| \rightarrow 0 as RR \rightarrow \infty. Show that A=B=1/4A=B=1 / 4 with C=D=0C=D=0.

(iii) Show that when b/ab / a is very large but finite, then the coefficients have the approximate form

C38ab,D18a3b3,A14316ab,B14+916abC \approx-\frac{3}{8} \frac{a}{b}, \quad D \approx \frac{1}{8} \frac{a^{3}}{b^{3}}, \quad A \approx \frac{1}{4}-\frac{3}{16} \frac{a}{b}, \quad B \approx \frac{1}{4}+\frac{9}{16} \frac{a}{b}

Typos? Please submit corrections to this page on GitHub.