Paper 3, Section II, A

Fluid Dynamics II | Part II, 2010

The equation for the vorticity ω(x,y)\omega(x, y) in two-dimensional incompressible flow takes the form

ωt+uωx+vωy=ν(2ωx2+2ωy2)\frac{\partial \omega}{\partial t}+u \frac{\partial \omega}{\partial x}+v \frac{\partial \omega}{\partial y}=\nu\left(\frac{\partial^{2} \omega}{\partial x^{2}}+\frac{\partial^{2} \omega}{\partial y^{2}}\right)

where

u=ψy,v=ψx and ω=(2ψx2+2ψy2)u=\frac{\partial \psi}{\partial y}, \quad v=-\frac{\partial \psi}{\partial x} \quad \text { and } \quad \omega=-\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}\right)

and ψ(x,y)\psi(x, y) is the stream function.

Show that this equation has a time-dependent similarity solution of the form

ψ=CxH(t)1ϕ(η),ω=CxH(t)3ϕηη(η) for η=yH(t)1\psi=C x H(t)^{-1} \phi(\eta), \quad \omega=-C x H(t)^{-3} \phi_{\eta \eta}(\eta) \quad \text { for } \quad \eta=y H(t)^{-1}

if H(t)=2CtH(t)=\sqrt{2 C t} and ϕ\phi satisfies the equation

3ϕηη+ηϕηηηϕηϕηη+ϕϕηηη+1Rϕηηηη=03 \phi_{\eta \eta}+\eta \phi_{\eta \eta \eta}-\phi_{\eta} \phi_{\eta \eta}+\phi \phi_{\eta \eta \eta}+\frac{1}{R} \phi_{\eta \eta \eta \eta}=0

and R=C/νR=C / \nu is the effective Reynolds number.

Show that this solution is appropriate for the problem of two-dimensional flow between the rigid planes y=±H(t)y=\pm H(t), and determine the boundary conditions on ϕ\phi in that case.

Verify that ()(*) has exact solutions, satisfying the boundary conditions, of the form

ϕ=(1)kkπsin(kπη)η,k=1,2,\phi=\frac{(-1)^{k}}{k \pi} \sin (k \pi \eta)-\eta, \quad k=1,2, \ldots

when R=k2π2/4R=k^{2} \pi^{2} / 4. Sketch this solution when kk is large, and discuss whether such solutions are likely to be realised in practice.

Typos? Please submit corrections to this page on GitHub.