Paper 4, Section I, D
A system with one degree of freedom has Lagrangian . Define the canonical momentum and the energy . Show that is constant along any classical path.
Consider a classical path with the boundary-value data
Define the action of the path. Show that the total derivative along the classical path obeys
Using Lagrange's equations, or otherwise, deduce that
where is the final momentum.
Typos? Please submit corrections to this page on GitHub.