Paper 1, Section II, G
Prove that if On is a definable function, then there is a definable function On satisfying
Define the notion of an initial ordinal, and explain its significance for cardinal arithmetic. State Hartogs' lemma. Using the recursion theorem define, giving justification, a function On On which enumerates the infinite initial ordinals.
Is there an ordinal with Justify your answer.
Typos? Please submit corrections to this page on GitHub.