Paper 4, Section II, H
(a) Let be a field. State what it means for to be a primitive th root of unity.
Show that if is a primitive th root of unity, then the characteristic of does not divide . Prove any theorems you use.
(b) Determine the minimum polynomial of a primitive 10 th root of unity over .
Show that .
(c) Determine .
[Hint: Write a necessary and sufficient condition on for a finite field to contain a primitive 10 th root of unity.]
Typos? Please submit corrections to this page on GitHub.