Paper 4, Section II, H

Galois Theory | Part II, 2009

(a) Let KK be a field. State what it means for ξnK\xi_{n} \in K to be a primitive nnth root of unity.

Show that if ξn\xi_{n} is a primitive nnth root of unity, then the characteristic of KK does not divide nn. Prove any theorems you use.

(b) Determine the minimum polynomial of a primitive 10 th root of unity ξ10\xi_{10} over Q\mathbb{Q}.

Show that 5Q(ξ10)\sqrt{5} \in \mathbb{Q}\left(\xi_{10}\right).

(c) Determine F3(ξ10),F11(ξ10),F19(ξ10)\mathbb{F}_{3}\left(\xi_{10}\right), \mathbb{F}_{11}\left(\xi_{10}\right), \mathbb{F}_{19}\left(\xi_{10}\right).

[Hint: Write a necessary and sufficient condition on qq for a finite field Fq\mathbb{F}_{q} to contain a primitive 10 th root of unity.]

Typos? Please submit corrections to this page on GitHub.