Paper 1, Section II, B

Further Complex Methods | Part II, 2009

Let F(z)F(z) be defined by

F(z)=0e2zt1+t3dt,argz<π2F(z)=\int_{0}^{\infty} \frac{e^{-2 z t}}{1+t^{3}} d t, \quad|\arg z|<\frac{\pi}{2}

Let F~(z)\tilde{F}(z) be defined by

F~(z)=0ie2zζ1+ζ3dζ,α<argz<β\tilde{F}(z)=\int_{0}^{-i \infty} \frac{e^{-2 z \zeta}}{1+\zeta^{3}} d \zeta, \quad \alpha<\arg z<\beta

where the above integral is along the negative imaginary axis of the complex ζ\zeta-plane and the real constants α\alpha and β\beta are to be determined.

Using Cauchy's theorem, or otherwise, compute F(z)F~(z)F(z)-\tilde{F}(z) and hence find a formula for the analytic continuation of F(z)F(z) for π2argz<π\frac{\pi}{2} \leqslant \arg z<\pi.

Typos? Please submit corrections to this page on GitHub.