Paper 3, Section II, G

Algebraic Topology | Part II, 2009

(i) Suppose that (C,d)(C, d) and (C,d)\left(C^{\prime}, d^{\prime}\right) are chain complexes, and f,g:CCf, g: C \rightarrow C^{\prime} are chain maps. Define what it means for ff and gg to be chain homotopic.

Show that if ff and gg are chain homotopic, and f,g:H(C)H(C)f_{*}, g_{*}: H_{*}(C) \rightarrow H_{*}\left(C^{\prime}\right) are the induced maps, then f=gf_{*}=g_{*}.

(ii) Define the Euler characteristic of a finite chain complex.

Given that one of the sequences below is exact and the others are not, which is the exact one?

0Z11Z24Z20Z13Z20Z25Z1100Z11Z24Z20Z13Z20Z24Z1100Z11Z24Z19Z13Z20Z23Z110\begin{aligned} &0 \rightarrow \mathbb{Z}^{11} \rightarrow \mathbb{Z}^{24} \rightarrow \mathbb{Z}^{20} \rightarrow \mathbb{Z}^{13} \rightarrow \mathbb{Z}^{20} \rightarrow \mathbb{Z}^{25} \rightarrow \mathbb{Z}^{11} \rightarrow 0 \\ &0 \rightarrow \mathbb{Z}^{11} \rightarrow \mathbb{Z}^{24} \rightarrow \mathbb{Z}^{20} \rightarrow \mathbb{Z}^{13} \rightarrow \mathbb{Z}^{20} \rightarrow \mathbb{Z}^{24} \rightarrow \mathbb{Z}^{11} \rightarrow 0 \\ &0 \rightarrow \mathbb{Z}^{11} \rightarrow \mathbb{Z}^{24} \rightarrow \mathbb{Z}^{19} \rightarrow \mathbb{Z}^{13} \rightarrow \mathbb{Z}^{20} \rightarrow \mathbb{Z}^{23} \rightarrow \mathbb{Z}^{11} \rightarrow 0 \end{aligned}

Justify your choice.

Typos? Please submit corrections to this page on GitHub.