Paper 3, Section II, D

Cosmology | Part II, 2009

In the Zel'dovich approximation, particle trajectories in a flat expanding universe are described by r(q,t)=a(t)[q+Ψ(q,t)]\mathbf{r}(\mathbf{q}, t)=a(t)[\mathbf{q}+\mathbf{\Psi}(\mathbf{q}, t)], where a(t)a(t) is the scale factor of the universe, q\mathbf{q} is the unperturbed comoving trajectory and Ψ\boldsymbol{\Psi} is the comoving displacement. The particle equation of motion is

r¨=Φ1ρP\ddot{\mathbf{r}}=-\nabla \Phi-\frac{1}{\rho} \nabla P

where ρ\rho is the mass density, PP is the pressure (Pρc2)\left(P \ll \rho c^{2}\right) and Φ\Phi is the Newtonian potential which satisfies the Poisson equation 2Φ=4πGρ\nabla^{2} \Phi=4 \pi G \rho.

(i) Show that the fractional density perturbation and the pressure gradient are given by

δρρˉρˉqΨ,Pρˉcs2aq2Ψ\delta \equiv \frac{\rho-\bar{\rho}}{\bar{\rho}} \approx-\nabla_{\mathbf{q}} \cdot \boldsymbol{\Psi}, \quad \nabla P \approx-\bar{\rho} \frac{c_{s}^{2}}{a} \nabla_{\mathbf{q}}^{2} \boldsymbol{\Psi}

where q\nabla_{\mathbf{q}} has components /qi,ρˉ=ρˉ(t)\partial / \partial q_{i}, \bar{\rho}=\bar{\rho}(t) is the homogeneous background density and cs2P/ρc_{s}^{2} \equiv \partial P / \partial \rho is the sound speed. [You may assume that the Jacobian ri/qj1=\left|\partial r_{i} / \partial q_{j}\right|^{-1}= aδij+aψi/qj1a3(1qΨ)\left|a \delta_{i j}+a \partial \psi_{i} / \partial q_{j}\right|^{-1} \approx a^{-3}\left(1-\nabla_{\mathbf{q}} \cdot \boldsymbol{\Psi}\right) for Ψq.]\left.|\boldsymbol{\Psi}| \ll|\mathbf{q}| .\right]

Use this result to integrate the Poisson equation once and obtain then the evolution equation for the comoving displacement:

Ψ¨+2a˙aΨ˙4πGρˉΨcs2a2q2Ψ=0\ddot{\boldsymbol{\Psi}}+2 \frac{\dot{a}}{a} \dot{\boldsymbol{\Psi}}-4 \pi G \bar{\rho} \boldsymbol{\Psi}-\frac{c_{s}^{2}}{a^{2}} \nabla_{\mathbf{q}}^{2} \boldsymbol{\Psi}=0

[You may assume that the integral of 2Φ=4πGρˉ\nabla^{2} \Phi=4 \pi G \bar{\rho} is Φ=4πGρˉr/3\nabla \Phi=4 \pi G \bar{\rho} \mathbf{r} / 3, that Ψ\boldsymbol{\Psi} is irrotational and that the Raychaudhuri equation is a¨/a4πGρˉ/3\ddot{a} / a \approx-4 \pi G \bar{\rho} / 3 for Pρc2P \ll \rho c^{2}.]

Consider the Fourier expansion δ(x,t)=kδkexp(ikx)\delta(\mathbf{x}, t)=\sum_{\mathbf{k}} \delta_{\mathbf{k}} \exp (i \mathbf{k} \cdot \mathbf{x}) of the density perturbation using the comoving wavenumber k(k=k)\mathbf{k}(k=|\mathbf{k}|) and obtain the evolution equation for the mode δk\delta_{\mathbf{k}} :

δ¨k+2a˙aδ˙k(4πGρˉcs2k2/a2)δk=0\ddot{\delta}_{\mathbf{k}}+2 \frac{\dot{a}}{a} \dot{\delta}_{\mathbf{k}}-\left(4 \pi G \bar{\rho}-c_{s}^{2} k^{2} / a^{2}\right) \delta_{\mathbf{k}}=0

(ii) Consider a flat matter-dominated universe with a(t)=(t/t0)2/3a(t)=\left(t / t_{0}\right)^{2 / 3} (background density ρˉ=1/(6πGt2))\left.\bar{\rho}=1 /\left(6 \pi G t^{2}\right)\right) and with an equation of state P=βρ4/3P=\beta \rho^{4 / 3} to show that ()(*) becomes

δ¨k+43tδ˙k1t2(23vˉs2k2)δk=0\ddot{\delta}_{\mathbf{k}}+\frac{4}{3 t} \dot{\delta}_{\mathbf{k}}-\frac{1}{t^{2}}\left(\frac{2}{3}-\bar{v}_{s}^{2} k^{2}\right) \delta_{\mathbf{k}}=0

where the constant vˉs2(4β/3)(6πG)1/3t04/3\bar{v}_{s}^{2} \equiv(4 \beta / 3)(6 \pi G)^{-1 / 3} t_{0}^{4 / 3}. Seek power law solutions of the form δktα\delta_{\mathbf{k}} \propto t^{\alpha} to find the growing and decaying modes

δk=Aktn++Bktn where n±=16±[(56)2vˉs2k2]1/2.\delta_{\mathbf{k}}=A_{\mathbf{k}} t^{n+}+B_{\mathbf{k}} t^{n-} \quad \text { where } \quad n_{\pm}=-\frac{1}{6} \pm\left[\left(\frac{5}{6}\right)^{2}-\bar{v}_{s}^{2} k^{2}\right]^{1 / 2} .

Typos? Please submit corrections to this page on GitHub.