Paper 1, Section II, D

Cosmology | Part II, 2009

(i) In a homogeneous and isotropic universe, the scalefactor a(t)a(t) obeys the Friedmann equation

(a˙a)2+kc2a2=8πG3ρ,\left(\frac{\dot{a}}{a}\right)^{2}+\frac{k c^{2}}{a^{2}}=\frac{8 \pi G}{3} \rho,

where ρ(t)\rho(t) is the matter density which, together with the pressure P(t)P(t), satisfies

ρ˙=3a˙a(ρ+P/c2)\dot{\rho}=-3 \frac{\dot{a}}{a}\left(\rho+P / c^{2}\right)

Use these two equations to derive the Raychaudhuri equation,

a¨a=4πG3(ρ+3P/c2)\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}\left(\rho+3 P / c^{2}\right)

(ii) Conformal time τ\tau is defined by taking dt/dτ=ad t / d \tau=a, so that a˙=a/aH\dot{a}=a^{\prime} / a \equiv \mathcal{H} where primes denote derivatives with respect to τ\tau. For matter obeying the equation of state P=wρc2P=w \rho c^{2}, show that the Friedmann and energy conservation equations imply

H2+kc2=8πG3ρ0a(1+3w)\mathcal{H}^{2}+k c^{2}=\frac{8 \pi G}{3} \rho_{0} a^{-(1+3 w)}

where ρ0=ρ(t0)\rho_{0}=\rho\left(t_{0}\right) and we take a(t0)=1a\left(t_{0}\right)=1 today. Use the Raychaudhuri equation to derive the expression

H+12(1+3w)[H2+kc2]=0\mathcal{H}^{\prime}+\frac{1}{2}(1+3 w)\left[\mathcal{H}^{2}+k c^{2}\right]=0

For a kc2=1k c^{2}=1 closed universe, by solving first for H\mathcal{H} (or otherwise), show that the scale factor satisfies

a=α(sinβτ)2/(1+3w)a=\alpha(\sin \beta \tau)^{2 /(1+3 w)}

where α,β\alpha, \beta are constants. [Hint: You may assume that dx/(1+x2)=cot1x+\int d x /\left(1+x^{2}\right)=-\cot ^{-1} x+ const.]

For a closed universe dominated by pressure-free matter (P=0)(P=0), find the complete parametric solution

a=12α(1cos2βτ),t=α4β(2βτsin2βτ)a=\frac{1}{2} \alpha(1-\cos 2 \beta \tau), \quad t=\frac{\alpha}{4 \beta}(2 \beta \tau-\sin 2 \beta \tau)

Typos? Please submit corrections to this page on GitHub.