Paper 1, Section II, 38A

Waves | Part II, 2009

The wave equation with spherical symmetry may be written

1r2r2(rp~)1c22t2p~=0\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \tilde{p})-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \tilde{p}=0

Find the solution for the pressure disturbance p~\tilde{p} in an outgoing wave, driven by a timevarying source with mass outflow rate q(t)q(t) at the origin, in an infinite fluid.

A semi-infinite fluid of density ρ\rho and sound speed cc occupies the half space x>0x>0. The plane x=0x=0 is occupied by a rigid wall, apart from a small square element of side hh that is centred on the point (0,y,z)\left(0, y^{\prime}, z^{\prime}\right) and oscillates in and out with displacement f0eiωtf_{0} e^{i \omega t}. By modelling this element as a point source, show that the pressure field in x>0x>0 is given by

p~(t,x,y,z)=2ρω2f0h24πReiω(tRc)\tilde{p}(t, x, y, z)=-\frac{2 \rho \omega^{2} f_{0} h^{2}}{4 \pi R} e^{i \omega\left(t-\frac{R}{c}\right)}

where R=[x2+(yy)2+(zz)2]1/2R=\left[x^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right]^{1 / 2}, on the assumption that Rc/ωf0,hR \gg c / \omega \gg f_{0}, h. Explain the factor 2 in the above formula.

Now suppose that the plane x=0x=0 is occupied by a loudspeaker whose displacement is given by

x=f(y,z)eiωt,x=f(y, z) e^{i \omega t},

where f(y,z)=0f(y, z)=0 for y,z>L|y|,|z|>L. Write down an integral expression for the pressure in x>0x>0. In the far field where r=(x2+y2+z2)1/2L,ωL2/c,c/ωr=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \gg L, \omega L^{2} / c, c / \omega, show that

p~(t,x,y,z)ρω22πreiω(tr/c)f^(m,n)\tilde{p}(t, x, y, z) \approx-\frac{\rho \omega^{2}}{2 \pi r} e^{i \omega(t-r / c)} \hat{f}(m, n)

where m=ωyrc,n=ωzrcm=-\frac{\omega y}{r c}, n=-\frac{\omega z}{r c} and

f^(m,n)=f(y,z)ei(my+nz)dydz\hat{f}(m, n)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(y^{\prime}, z^{\prime}\right) e^{-i\left(m y^{\prime}+n z^{\prime}\right)} d y^{\prime} d z^{\prime}

Evaluate this integral when ff is given by

f(y,z)={1,a<y<a,b<z<b0, otherwise f(y, z)= \begin{cases}1, & -a<y<a,-b<z<b \\ 0, & \text { otherwise }\end{cases}

and discuss the result in the case ωb/c\omega b / c is small but ωa/c\omega a / c is of order unity.

Typos? Please submit corrections to this page on GitHub.