Paper 1, Section II, J

Applied Probability | Part II, 2009

(a) Let (Xt,t0)\left(X_{t}, t \geqslant 0\right) be a continuous-time Markov chain on a countable state space I. Explain what is meant by a stopping time for the chain (Xt,t0)\left(X_{t}, t \geqslant 0\right). State the strong Markov property. What does it mean to say that XX is irreducible?

(b) Let (Xt,t0)\left(X_{t}, t \geqslant 0\right) be a Markov chain on I={0,1,}I=\{0,1, \ldots\} with QQ-matrix given by Q=(qi,j)i,jIQ=\left(q_{i, j}\right)_{i, j \in I} such that:

(1) qi,0>0q_{i, 0}>0 for all i1i \geqslant 1, but q0,j=0q_{0, j}=0 for all jIj \in I, and

(2) qi,i+1>0q_{i, i+1}>0 for all i1i \geqslant 1, but qi,j=0q_{i, j}=0 if j>i+1j>i+1.

Is (Xt,t0)\left(X_{t}, t \geqslant 0\right) irreducible? Fix M1M \geqslant 1, and assume that X0=iX_{0}=i, where 1iM1 \leqslant i \leqslant M. Show that if J1=inf{t0:XtX0}J_{1}=\inf \left\{t \geqslant 0: X_{t} \neq X_{0}\right\} is the first jump time, then there exists δ>0\delta>0 such that Pi(XJ1=0)δ\mathbb{P}_{i}\left(X_{J_{1}}=0\right) \geqslant \delta, uniformly over 1iM1 \leqslant i \leqslant M. Let T0=0T_{0}=0 and define recursively for m0m \geqslant 0,

Tm+1=inf{tTm:XtXTm and 1XtM}T_{m+1}=\inf \left\{t \geqslant T_{m}: X_{t} \neq X_{T_{m}} \text { and } 1 \leqslant X_{t} \leqslant M\right\}

Let AmA_{m} be the event Am={Tm<}A_{m}=\left\{T_{m}<\infty\right\}. Show that Pi(Am)(1δ)m\mathbb{P}_{i}\left(A_{m}\right) \leqslant(1-\delta)^{m}, for 1iM1 \leqslant i \leqslant M.

(c) Let (Xt,t0)\left(X_{t}, t \geqslant 0\right) be the Markov chain from (b). Define two events EE and FF by

E={Xt=0 for all t large enough },F={limtXt=+}E=\left\{X_{t}=0 \text { for all } t \text { large enough }\right\}, \quad F=\left\{\lim _{t \rightarrow \infty} X_{t}=+\infty\right\}

Show that Pi(EF)=1\mathbb{P}_{i}(E \cup F)=1 for all iIi \in I.

Typos? Please submit corrections to this page on GitHub.