Paper 4, Section II, J

Probability and Measure | Part II, 2009

Let (Ω,F,P)(\Omega, \mathcal{F}, \mathbb{P}) be a probability space and let G\mathcal{G} be a sub- σ\sigma-algebra of F\mathcal{F}. Show that, for any random variable XL2(P)X \in L^{2}(\mathbb{P}), there exists a G\mathcal{G}-measurable random variable YL2(P)Y \in L^{2}(\mathbb{P}) such that E((XY)Z)=0\mathbb{E}((X-Y) Z)=0 for all G\mathcal{G}-measurable random variables ZL2(P)Z \in L^{2}(\mathbb{P}).

[You may assume without proof the completeness of L2(P).L^{2}(\mathbb{P}) . ]

Let (G,X)(G, X) be a Gaussian random variable in R2\mathbb{R}^{2}, with mean (μ,ν)(\mu, \nu) and covariance matrix(uvvw)\operatorname{matrix}\left(\begin{array}{cc}u & v \\ v & w\end{array}\right). Assume that F=σ(G,X)\mathcal{F}=\sigma(G, X) and G=σ(G)\mathcal{G}=\sigma(G). Find the random variable YY explicitly in this case.

Typos? Please submit corrections to this page on GitHub.