Paper 3, Section II, J

Probability and Measure | Part II, 2009

State and prove the first and second Borel-Cantelli lemmas.

Let (Xn:nN)\left(X_{n}: n \in \mathbb{N}\right) be a sequence of independent Cauchy random variables. Thus, each XnX_{n} is real-valued, with density function

f(x)=1π(1+x2).f(x)=\frac{1}{\pi\left(1+x^{2}\right)} .

Show that

lim supnlogXnlogn=c, almost surely, \limsup _{n \rightarrow \infty} \frac{\log X_{n}}{\log n}=c, \quad \text { almost surely, }

for some constant cc, to be determined.

Typos? Please submit corrections to this page on GitHub.