Paper 2, Section II, C

Principles of Quantum Mechanics | Part II, 2009

Let σ=(σ1,σ2,σ3)\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) be a set of Hermitian operators obeying

[σi,σj]=2iϵijkσk and (nσ)2=1\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k} \quad \text { and } \quad(\mathbf{n} \cdot \boldsymbol{\sigma})^{2}=1

where n\mathbf{n} is any unit vector. Show that ()(*) implies

(aσ)(bσ)=ab+i(a×b)σ(\mathbf{a} \cdot \boldsymbol{\sigma})(\mathbf{b} \cdot \boldsymbol{\sigma})=\mathbf{a} \cdot \mathbf{b}+i(\mathbf{a} \times \mathbf{b}) \cdot \boldsymbol{\sigma}

for any vectors a and b. Explain, with reference to the properties ()(*), how σ\boldsymbol{\sigma} can be related to the intrinsic angular momentum S\mathbf{S} for a particle of spin 12\frac{1}{2}.

Show that the operators P±=12(1±nσ)P_{\pm}=\frac{1}{2}(1 \pm \mathbf{n} \cdot \boldsymbol{\sigma}) are Hermitian and obey

P±2=P±,P+P=PP+=0P_{\pm}^{2}=P_{\pm}, \quad P_{+} P_{-}=P_{-} P_{+}=0

Show also how P±P_{\pm}can be used to write any state χ|\chi\rangle as a linear combination of eigenstates of nσ\mathbf{n} \cdot \boldsymbol{\sigma}. Use this to deduce that if the system is in a normalised state χ|\chi\rangle when nσ\mathbf{n} \cdot \boldsymbol{\sigma} is measured, then the results ±1\pm 1 will be obtained with probabilities

P±χ2=12(1±χnσχ)\| P_{\pm}|\chi\rangle \|^{2}=\frac{1}{2}(1 \pm\langle\chi|\mathbf{n} \cdot \boldsymbol{\sigma}| \chi\rangle)

If χ|\chi\rangle is a state corresponding to the system having spin up along a direction defined by a unit vector m\mathbf{m}, show that a measurement will find the system to have spin up along n\mathbf{n} with probability 12(1+nm)\frac{1}{2}(1+\mathbf{n} \cdot \mathbf{m}).

Typos? Please submit corrections to this page on GitHub.