Paper 3, Section II, B

Numerical Analysis | Part II, 2009

Prove that all Toeplitz tridiagonal M×MM \times M matrices AA of the form

A=[abbabbabba]A=\left[\begin{array}{rrrrr} a & b & & & \\ -b & a & b & & \\ & \ddots & \ddots & \ddots & \\ & & -b & a & b \\ & & & -b & a \end{array}\right]

share the same eigenvectors (v(k))k=1M\left(\boldsymbol{v}^{(k)}\right)_{k=1}^{M}, with the components vm(k)=imsinkmπM+1,m=\boldsymbol{v}_{m}^{(k)}=i^{m} \sin \frac{k m \pi}{M+1}, m= 1,,M1, \ldots, M, where i=1i=\sqrt{-1}, and find their eigenvalues.

The advection equation

ut=ux,0x1,0tT,\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}, \quad 0 \leqslant x \leqslant 1, \quad 0 \leqslant t \leqslant T,

is approximated by the Crank-Nicolson scheme

umn+1umn=14μ(um+1n+1um1n+1)+14μ(um+1num1n)u_{m}^{n+1}-u_{m}^{n}=\frac{1}{4} \mu\left(u_{m+1}^{n+1}-u_{m-1}^{n+1}\right)+\frac{1}{4} \mu\left(u_{m+1}^{n}-u_{m-1}^{n}\right)

where μ=Δt(Δx)2,Δx=1M+1\mu=\frac{\Delta t}{(\Delta x)^{2}}, \Delta x=\frac{1}{M+1}, and umnu_{m}^{n} is an approximation to u(mΔx,nΔt)u(m \Delta x, n \Delta t). Assuming that u(0,t)=u(1,t)=0u(0, t)=u(1, t)=0, show that the above scheme can be written in the form

Bun+1=Cun,0nT/Δt1B \boldsymbol{u}^{n+1}=C \boldsymbol{u}^{n}, \quad 0 \leqslant n \leqslant T / \Delta t-1

where un=[u1n,,uMn]T\boldsymbol{u}^{n}=\left[u_{1}^{n}, \ldots, u_{M}^{n}\right]^{T} and the real matrices BB and CC should be found. Using matrix analysis, find the range of μ\mu for which the scheme is stable. [Fourier analysis is not acceptable.]

Typos? Please submit corrections to this page on GitHub.