2.II.22F
State and prove the principle of uniform boundedness.
[You may assume the Baire category theorem.]
Suppose that and are Banach spaces. Suppose that
is linear and continuous in each variable separately, that is to say that, if is fixed,
is a continuous linear map and, if is fixed,
is a continuous linear map. Show that there exists an such that
for all . Deduce that is continuous.
Suppose and are Banach spaces. Suppose that
is linear and continuous in each variable separately. Does it follow that is continuous? Give reasons.
Suppose that and are Banach spaces. Suppose that
is continuous in each variable separately. Does it follow that is continuous? Give reasons.
Typos? Please submit corrections to this page on GitHub.