2.II.20G

Number Fields | Part II, 2008

(a) Factorise the ideals [2], [3] and [5] in the ring of integers OK\mathcal{O}_{K} of the field K=Q(30)K=\mathbb{Q}(\sqrt{30}). Using Minkowski's bound

n!nn(4π)sdK,\frac{n !}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\left|d_{K}\right|},

determine the ideal class group of KK.

[Hint: it might be helpful to notice that 32=NK/Q(α)\frac{3}{2}=N_{K / \mathbb{Q}}(\alpha) for some αK.]\left.\alpha \in K .\right]

(b) Find the fundamental unit of KK and determine all solutions of the equations x230y2=±5x^{2}-30 y^{2}=\pm 5 in integers x,yZx, y \in \mathbb{Z}. Prove that there are in fact no solutions of x230y2=5x^{2}-30 y^{2}=5 in integers x,yZx, y \in \mathbb{Z}.

Typos? Please submit corrections to this page on GitHub.