3.II
Define the chromatic polynomial of a graph . Show that if has vertices and edges then
where and and for all . [You may assume the deletion-contraction relation, provided it is clearly stated.]
Show that if is a tree on vertices then . Does the converse hold?
[Hint: if is disconnected, how is the chromatic polynomial of related to the chromatic polynomials of its components?]
Show that if is a graph on vertices with the same chromatic polynomial as (the Turán graph on vertices with vertex classes) then must be isomorphic to .
Typos? Please submit corrections to this page on GitHub.