2.II.16G
(i) State the Completeness Theorem and the Compactness Theorem for the predicate calculus.
(ii) Show that if a theory has arbitrarily large finite models then it has an infinite model. Deduce that there is no first order theory whose models are just the finite fields of characteristic 2 . Show that the theory of infinite fields of characteristic 2 does not have a finite axiomatisation.
(iii) Let be the collection of closed terms in some first order language . Suppose that is a provable sentence of with quantifier-free. Show that the set of sentences is inconsistent.
[Hint: consider the minimal substructure of a model.]
Deduce that there are in such that is provable.
Typos? Please submit corrections to this page on GitHub.